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Abstract. The hemivariational inequality approach is used in order to establish the existence of 
solutions to a large class of noncoercive constrained problems in a reflexive Banach space, in which 
the set of all admissible elements is not convex but fulfills some star-shaped property. 
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1. Introduction 

This paper follows the work of Naniewicz [ 151 concerning the study of constrained 
problems in a reflexive Banach space, in which the set of all admissible elements 
is not convex but fulfills some star-shaped property. 

In [15] Naniewicz proved some remarkable existence results for the following 
problem: 

Problem P. Find u E C such that 
(Au-f,4 1 0, V’v E C(u), 

where the set C is assumed to be closed and star-shaped with respect to a certain 
ball, Tc(u) denotes Clarke’s tangent cone of C at u E C, A is assumed to be 
a pseudomonotone and coercive operator and f is given in X*. However, the 
variational formulation of some engineering problems leads to hemivariational 
inequalities which are noncoercive. For instance, the lack of coercivity may be due 
to boundary conditions which are insufficiently blocking-up. By using the recession 
approach developed by Adly, Goeleven and Thera [l], we are able to extend the 
theory of Naniewicz to problem P when A is no more coercive. 

Problem P is a special case of a great class of problems called hemivariational 
inequalities which have been introduced by Panagiotopoulos [20] in order to for- 
mulate various mechanical problems connected to energy ftmctionals which are 
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neither convex nor differentiable. As a consequence of the contributions of Pana- 
giotopoulos, the study of hemivariational inequalities has emerged as an interesting 
branch of applied mathematics and this topic is now the subject of the attention of 
several engineers and mathematicians (see Goeleven and Thera [13], Naniewicz 
[ 15]-[ 171 and Panagiotopoulos [ 18]-[22]). 

For details concerning the possible applications of this kind of model, we refer 
the reader to the books of Naniewicz and Panagiotopoulos [ 171, and Panagiotopou- 
10s [21], [22]. 

The hemivariational inequality considered in this paper permits the formula- 
tion of new problems in the theory of elasticity. Indeed, problem P is connected 
with the treatment of linear elastic bodies whose displacement field is subjected 
to constraints expressed by means of nonconvex star-shaped and closed admis- 
sible sets. These problems have been studied for the first time in the book of 
Naniewicz and Panagiotopoulos [17]. However, the approach examined in [17] 
requires blocking-up boundary conditions in order to guarantee the coercivity of 
the underlying operator A. The study of the same problems with insufficiently 
blocking-up boundary conditions becomes now possible by the theory developed 
in this paper. 

2. Preliminaries, Notations and Basic Facts 

Let X be a real reflexive Banach space. Let us denote further by X* the dual space 
to X and let (., .) be the duality pairing between X and X*. The norm in X is 
denoted by I] . I] and on X* by I] . I] * . We will write ” + ” and ” 3 ” to denote 
respectively the strong convergence and the weak convergence. For a nonempty 
subset D of X, we write int{D} for the interior of D in X and cl(D) for the 
closure. For an operator A : X + X*, we write Ker(A) for the kernel, R(A) for 
the range and D(A) for the domain. 

An operator T : X -+ 2x* is said to be pseudomonotone (see Browder and 
Hess [6]) if 

(i) the set Tu is nonempty, bounded, closed and convex for any 21 f X; 

(ii) T is upper semicontinuous from each finite dimensional subspace F of X to 
X* equipped with the weak topology, i.e. to a given element f E F and a 
weak neighborhood V of T (f ) in X* there exists a neighborhood U of f in 
F such that T(u) c F for all u E U; 

(iii) if un 2 u and if Z, E T(u,) is such that 

limsup(z,,u, - U) 5 0, 

then for each ‘u E V there exists Z(W) E T(U) such that 

liminf(z,, u, - w) 2 (z(v)+ -u>. 
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An operator A : X --+ X* is said to have the S+ - property (see Pascali and 
Sburlan [23]) if U, - u and lim sup(A~,, u, - U) 5 0 implies that u, -+ U. 

Let G : X + W U {+oo} be a functional. Then its behavior at infinity can be 
described in terms of what is called the recessionfunction of G (see Baiocchi et al. 
[4]), defined as follows 

G,(z) : = lm&fG(“@ 
V+X 

= inf{hyi;f G&v,)/&,, : t, + oo,uun -+ z}. 

We recall the basic properties of the recession function. Let G, H be two functionals 
defined on X with values in (-co, +oo] . Then 

Pt. G, is lower semicontinuous and positively homogeneous of degree 1; 

P2. (G+ H), 2 G, +I&,; 

P+ If H is positively homogeneous of order 1 and continuous, then 

(G+H),=G,+H; 

Ph. If G is non-negative, positively homogeneous of degree greater than 1 and 
lower semicontinuous, then 

+m if G(z) # 0 
G&4 = 

0 if G(z) = 0. 

Let u, E X, we intoduce the concept of recession function associated to a 
general operator A : X + X* with respect to u, by the formula 

Ed,+ : = liingf(A(tv),tv - uO)/t. 
v+x 

If we set G(z) := (Ax, z - uO), then clearly 

If u, = 0, then our definition reduces to the one introduced by Brezis and Nirenberg 
[5] in order to characterize the range of some nonlinear operators. 

Let K be a subset of X, the recession cone of K is the closed cone 

K cm := do~bwK)cal= {x E x : {$JK}c&) < +co}, 

where J,!JK denotes the indicator function of K. Equivalently, this amounts to say 
that II: belongs to K, if and only if there exists sequences {t, 1 n E Wr} and 
{z, 1 n E nV} c K such that t, + fee and t;‘z, -+ Z. 
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Let C c X be a nonempty closed subset. We denote by 

Tc(u) : = {k E x : vu, E c, u, + u, VA, 4 0, 
3k, -+ k : u, + X,k, E C}, 

the Clarke S tangent cone of C at u, by 

NC(U) := {u* E x* : (u*,k) 5 0,v’k E Tc(u)}, 

the Clarke? normal cone to C at u, by 

&(u) := infvrEC 11 u - w 11, 

the distance function of C, by 

do,(u, 4 : = ;~uyJJkk(Y + iv> - dC(YW, 
7 

the generalized directional derivative of dc at u in the direction v and by 

8dc(zl) := {w E X* : do,@, v) 2 (w,v),Vv E X}, 

the Clarke’s generalized gradient ofdc at u (see Clarke [S]). 
Let B(uo, p) be a closed ball in X with center u, and radius p > 0. We say that 

C is star-shaped with respect to B(uo, p) (see Naniewicz [15]) if 

We resume in the following lemma the basic results concerning the function 
distance of a star-shaped set which have been proved by Naniewicz. 

LEMMA 2.1. (Naniewicz; [ 151). Let X be a real rejexive Banach space, C a 
nonempty closed subset of X. If C is star-shaped with respect to B(u,, p) then 

(1) d;(U,q, - u) 5 -de(u) - ,o, Vu ic?C 

(2) d;(u, uo - u) = 0, vu E c. 

The following result concerning the pseudomonotonicity property of the general- 
ized Clarke’s gradient is also due to Naniewicz [ 161. 

LEMMA 2.2. (Naniewicz; [16]). Let X be a real rejexive Banach space. Let 
fi : X -+ II;) be a finite collection of locally Lipschitzian convexfinctions dejined 
onX.Dejinef :X--+Ras 

f(u) := min{fi(u) : i = 1, . ..N}. u E X. 

Let A : X -+ X* be a maximal monotone operator with D(A) = X and satisfying 
the S+-property. Then A + af is pseudomonotone. 
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As a direct consequence of this Lemma, we get the following result. 

PROPOSITION 2.1. Let X be a real rejexive Banach space, A : X + X* a 
maximal monotone operator with D(A) = X and satisfying the S+-property Let 
C be a subset of X which can be represented us the union of a finite collection 
of nonempty closed convex subsets Cj (j = 1, . . . . N) of X, i.e. C = U~=,Cj. We 
assume that int(f$‘YzlC~) # 0. Then (i) C is star-shaped with respect to a certain 
ball and (ii) for each X 2 0, A + Xddc is pseudomonotone. 

Prooj (i) trivial. (ii) The distance function of C is expressed as a pointwise 
minimum of the Lipschitzian convex functions di : X -+ ER, where di denotes the 
distance function of Ci, and the result follows from Lemma 2.2. n 

3. Constrained Problems 

Let us introduce the following set of asymptotic directions (cf. Adly, Goeleven and 
ThCra [l] and Tomarelli [25]): 

R(A, f, u,) := {w E X : 3u, E X, 11 U, II+ +oo, w, := U, II un II-l- w 
and (Aun, un - u,> 5 (f, un - uo)>. 

DEFINITION 2.1. We say that R(A, f, u,) is a-compact if the following property 
holds true: If {wa 1 n E Hv} is a sequence such that 

with 

and 

II %z II+ +w 
thenw, + w. 

Several examples of operators for which R(A, f, Q) is u-compact can be found 
in Adly et al. [ 11. Further properties of R(A, f, u,) are contained in the following 
three propositions. 

PROPOSITION 3.1. Let U, be given in X and f in X* . Zf 

(i) A satisfies the S’-property; 

(ii) (Az,z) 2 0, Vx E X; 

(iii) A is weakly continuous, i.e. x, 2 x + Ax, 2 Ax; 
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(iv) A is positively homogeneous. 

Then R(A, f, u,) is u-compact and 

R(A,f,u,) c {w E X\(O) : (Aw, w) = 0). 

Proof. Let w E R(A, f, u,). There exists zt, E X such that 
t, :=)I u, I)+ +oo, w, := u,/t, - w, and 

( Aun 1 un - Uo) I (f, un - 210) 

Dividing (1) by ti, we obtain 

(Awn 7 wn) I (Awn, u0 r) + (f,Wn - F) 
n n n 

and thus, by assumption (iii), 

limsup(Aw,, w,) 5 0. 

We have 

limsup(Aw,, w, - w) 5 
limsup(Aw,, w,) + lim sup(Aw,, -w), 

so that, by assumption (ii) and (iii) 

limsup(Aw,, wn - w) 5 lim sup(Awn, wn). 

(1) 

(2) 

(3) 

This together with (3) imply that 

limsup(Aw,, w, - w) 5 0, 

and thus, by assumption (i), the sequence w, is strongly convergent to w, which 
proves the a-compacity of R(A, f,uo). Since 11 w, II= 1 and w, -+ w, we 
have II w II= 1. Then using (2) again, we get (Aw, w) 5 0. Therefore, using 
assumption (ii) again, we obtain 

R(A, f, u,) c {w E X\(O) : (Aw, w) = O}. n 

EXAMPLE 3.1. Set X := H’(R), w h ere R is an open bounded subset of class C’ 
in Rn (n 2 1, n E N). Let A : X -+ X* be the bounded linear operator defined 
by 

(Au, IJ) := Jo Vu.Vvdx, V u, v E X. 

It is easy to see that assumptions (ii)- are satisfied. It remains to prove that 
A satisfies the S+-property. Indeed, let {w, I n E N} be a sequence such that 
w, 2 w in H’(0) (which implies that 20, -+ w in L2(0) and VW, 2 VW in 
L2(s2)) and 

IimsupJo Vw,.V(w, - w)dx 5 0. 
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We get 
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limsup Jo 1 VW, I2 dx 5 limsupJn Vw,.V(w, - w)dx 
+ lim sup Jo VW, .Vwdx 

Thus by the weak lower semicontinuity of the map x -+ (Ax, xc>, we obtain 

Ja 1 VW I2 dx 5 1. im inf Jo I VW, I2 dx 5 lim sup & I VW, I2 dx 
5 Jo 1 VW I2 dx. 

Thus 

II vw7l llL~-$ll VW lb . 
Since VW, 2 VW and the norm in L2(Q) is Kadec, we obtain 

VW, + VW in L2(st). 

Using the fact that w, + w in L2(Q) together with (4), we get 

wn + w in H’(R). 

PROPOSITION 3.2. Let u, be given in X and f in X*. If 

(i) R(A, f, u,) is a-compact; 

(ii) there exists a nonempty subset W of X\(O) such that 

RCA, f, 4 c W 

and 

tc) %m,A(w) > (f> w), v’w E w. 

Then R(A, f, u,) is empty. 
Proof. Suppose by contradiction that R(A, f, ZL,) is nonempty. Since 

R(A, f, uO) c W we have 

%m,A(W) > (f, w>, ‘d’w E W, f> WI). 

We can also find a sequence {un ( n E Bv} such that t, :=I[ u, II-+ co, 
W n := unl II un II- w 
and 

(4) 

n 

(A(tnwn), tnwn - uo) I (f, tnwn - uo) (5) 
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Dividing (5) by t,, we get 

(A(&s~Wn)t;~, kzwn - ‘1Lo) I (f,wn - 2). 

By assumption (i), w, + w and thus 

%LO,A(~) 5 (fish 

a contradiction. 

PROPOSITION 3.3. Let X be a real reflexive Banach space such that X L) L2 (R) 
continuously (R denotes an open set in I?). Let u, be given in X and f in X*. We 
assume that f (x, u) : IR x R + R is measurable in x and continuous in u. Assume 
for a.e. x E f2 and all u E R, 

(fl) I f(x, 4 I 5 a I u I +w, a 2 0, b E L2(ft> 
(f2) u.f(x, u) 1 -c(x) 1 u 1 -d(x), c E L2(f2), d E L’(R). 

Let A : X + X* be an operator satisfying assumptions (i)-(iv) of Proposition 3.1 
and let B : X + X* be the operator dejined by 

(Bu,v) := Js2 f(~,z+dx, Vu,z) E X. 

Then R(A + B, f, u,) is a-compact and 

R(A + B, f, u,) c {w E X\(O) : (Aw, w) = O}. 

ProoJ Let w E R(A, f, u,). There exists u, E X such that 
t, :=I] u, II--+ +oo, wn := u&t, - w and 

(Awn, wn) + (t,‘Bun, wn) 5 
(Awn, e > + K2BUn,uo) + (&wn - 2) 

which means that 

-Jo y 1 un 1 dx -Ja ydx + (Aw~,w~) 

5 (Awn,~~+aJ~~/uo/d~ 

+J~~/‘~boIdx+(&w+). n 

The embedding X 9 L2(fi) is continuous and there exists C > 0 such that 

II u llL2 i c II u II, kf’u E x- 
Then it is easy to see that 

(Awn, wn) I (Awn, 2) + (&: wn - z) + 4n + Pl& 
where 

Q! = C(ll c llL2 +a II uo IM 
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and 

P =Il d IILl + II b llL4 %I llL2 . 
Thus 

limsup(Aw,, w,) 2 0, 

and we conclude as in Proposition 3.1 n 

Let us now come back to problem P. As in the article of Naniewicz [15] we will 
use a penalization method, but to prove the existence of a solution for the penalized 
problem we need another approach than the one used by Naniewicz [15] which is 
only valid for coercive problems. 

For any X > 0, we formulate the penalization problem. 

Problem(Qx). Find ux E X such that : 
(Azlx-f,v-21X)+X~~(~X,~--UX) 2 O,VWEX. 

Suppose that the following hypotheses hold true. 

(HI) X is a real reflexive Banach space and C is a nonempty closed subset of X 
which is star-shaped with respect to a ball B(uo, p), p > 0; 

(Hz) A + Xddc is pseudomonotone for each X > 0; 

(H3) A is bounded. 

LEMMA 3.1. Suppose that assumptions (Hr )-(Hs) are satis$ed. If 

WLf,d = 0 

then problem (Qx) has at least one solution. 
ProoJ Let B, be the nonempty closed bounded set defined by 

B, := {x E X : 11 z (I 5 n}. 

Since dc is Lipschitz continuous, the operator adc : X -+ X* acts as a bounded 
operator, so that with assumptions (HI)-(Hs) and by ([7]; theorem 7.8) (since B, 
is bounded, the coercivity assumption of theorem 7.8 given in the book of Browder 
[7] is not necessary) there exist 

and 

ZX,n E (A + Xadc)(uA,n) 
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such that 

h,n - f, v - UX,n) L 0, ~I) E % 
Thus, we get 

X&ux,n,v - qn) + Wx,n - f,v - w,n) 2 0, VW E Bn. (6) 

We prove that there exists k E N\(O) such that (( u~,~ ((< k. If 
not, 11 u~,~ II= n for each n E N\(O). Put WX,~ := uA+/n. Then, considering 
eventually a subsequence, we can assume that 

Moreover, there exists 4 E q(O) such that u, E B, for each n > q. Then, for 
all n > Q, n E N, we put w := u0 in (6) and we get 

-X&c(u~,n, uo - UX,~) + (Au~,n - f, uX,n - ~0) I 0. 

By Lemma 2.1, 

ds(UA,n, Uo - U&n) I 07 

and thus 

(Aux,n - f, UX,n - G> 5 0, 

so that 

Jw, f, uo) # 0, 

and a contradiction. 
We prove that U&k solves problem (&A). Indeed, for all y E X, there exists 

E > 0 such that UA,I, + &(y - u&k) E Bk. Take 

E < @- 11 uA,k iI)/ 11 Y - uX,k 11, 8 Y # u&k 

and 

& = 1, if y = UX,k. 

If we put 2, := UX,k + &(jj - UX,~) in (6), we get 

&Ad;(%,k, Y - U&k) + +h,k - f, Y - Ux,k) 2 0. 

Since E > 0 and y is arbitrarely chosen in X, we get our result. 

We are now able to prove our first existence theorem. 

THEOREM 3.1. Suppose that assumptions (HI)-(Hs) are satisfied. Zf 

RCA, f, uo> = 0 
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then (i) problem P has at least one solution and ii) there exist N E IV\(O) such 
that for all 8 2 N, 8 E IV, each solution of problem (Qe) is also a solution of 
problem P. 

Proo$ For each n E pV\{O} we apply Lemma 3.1 to get a sequence u, E X 
such that 

(Au, - f, v - u,) + n&(un, v - u,) 2 0, VW E X. (7) 

We prove that there exists A4 > 0 such that: 

II un II I M, vn E N\W. 

Assume the contrary. Then by considering eventually a subsequence, we may 
assume that 

II un II+ 00 

and 

Wn=&--\w. 

Moreover, if we put w := u, in (7) then we get 

(Aun - f, un - uo) - n&!(%z, uo - %> 5 0 

and thus, by using Lemma 2.1, we obtain 

(Au, - f, un - ~0) I 0, 

so that w E R(A, f, uo) and a contradiction. 
We prove that there exists N E Hv\{O} such that ug E C for all 8 1 N, 19 E Pv. 

Indeed, if we suppose the contrary, then we can extract a subsequence (again 
denoted by u,) such that U, k?C and 

(Au, - f, uo - %> + n&w0 - %> 1 0, 

which implies by using Lemma 2.1 that 

(Au, - f, uo - u,) 2 ndc(u,) + w 2 w. 

Thus 

w I II f II*11 uo - un II + II Aun ll*ll uo - un ll 

I II f II* Of+ II uo II>+ II A II MOf+ II uo II> 

= 0, 

with o :=[I f II* (M+ II u. II>+ II A II M(M+ II uo II>- 

We conclude that: 
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which is a contradiction for n great enough. 
Choose 0 2 N and put u := ug. It is clear that u is a solution of problem P. 

Indeed, in order to assert that 

(Au - f, 4 1 0, VY E C(u) 

it suffices to recall that since u E C, 

y E Tc(u) H d;(u, y) = 0. 

REMARK 3.1. (i) Various sufficient conditions on A and C guaranteeing the 
pseudomonotocity of A + G’dc can be found in the article of Naniewicz [16] and 
the book of Naniewicz and Panagiotopoulos [ 171. (ii) If A is coercive with respect 
to u,, i.e. (Au,u - u,)/ 11 u II+ +co as I] u I]+ +co, then R(A, f,u,) is 
empty. (iii) Proposition 3.2 means that if we can prove the compactness condition 
requiring the a-compacity of R(A, f, u,) and the compatibility condition (C) then 
R(A, f, u,) is necessarily empty. By using Theorem 3.1 together with Proposition 
3.2, we obtain the Corollary 3.1 stated below. (iv) More examples of problems 
which lead to an empty set of “bad” directions R(A, f, u,) can be found in the 
article of Adly et al. [ 11. 

COROLLARY 3.1. Suppose that assumptions (HI)-(H3) are satis$ed. If 
(i) R(A, f, uO) is u-compact, 
(ii) there exists a nonempty subset W of X\(O) such that R(A, f, u,) C W 
and 

cc> Tw+4(W) > (f, 4, bf’w E w 

then problem P has at least one solution 

4. A General Existence Theorem 

Let us now introduce the following refined set of asymptotic directions: 

R(A, f, C, u,) := {w E X : 3u, E C, 11 u, II+ +co, 
W n := u, 11’11, II-l- w 
and (Aun, un - u,> 5 (f, un - u,)). 

As in Section 3, we say that R(A, f, C, u,) is a-compactif for each w E R(A, f, C, u,) 
the sequences {w, I n E mV} which appear in the definition of this set, are strongly 
convergent to w, i.e. w, -+ w in X. 

THEOREM 4.1. Suppose that assumptions (HI)-(H3) are sati@ied. I$ 

R(A, f, C, uo) = 0 

then problem P has at least one solution. 
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Proofi Fix n E N\{O} and let 

BI, := {cc E x : 1) z 1) < k}, 

where k E N\(O) . is c h osen great enough so that u, E Bk. 
Let j > k be given in N. As in Lemma 3.1, we prove the existence of 

un,j E Bj such that 

n&u,,j,v - UQ) + (Au,,~ - f,v - UQ) 1 0, VV E Bj. 

We claim that there exists 6 = 0(j) E pv\{O} such that ue,j E C. Indeed, 
suppose on the contrary that un,j &C, Vn E N\(O). Then 

b%,j - f, u. - un,j) + n&(u,,j, u. - x,j) 2 0, 

which implies that 

(AWQ - f,uo - u,,j) > ndc(u,,j) + np 1 np. 

Thus 

np 2 $.f;l*ll uo - un,j II + II Aunj II4 uo - un,j II 

- 

with o(j) :=I f IL G+ II uo II)+ II A I/ A.?+ /I uo II). 
We conclude that for each n E N\(O) 

n 5 4>, 

which is a contradiction. 
We prove that there exists k’ E N, k’ 1 k such that II ZQ(~~),~/ II < k’. If not, 

II %(i),i II= f i or each i E N, i 2 k. On relabeling if necessary, the sequence 
defined by wi := wO(~),~ = ZQ(~),~/~ satisfies wi - W, ui := ue(i),i E C and 

Wi - f, ui - uo) 5 0, 

which means that w E R(A, f, C, u,), a contradiction. 
We have 

Q(k’)&(up, v - up) + (Auk’ - f, v - arc/> 1 0, Vv E Bkfi. (8) 

Let y E X, there exists E > 0 such that 

up + &(Y - IL/$) E Bp. 

If we put v := ukj + e(~ - uk,) in (8), we get 

e(k’)a$,(u,, , y - up) + E(AZW - f, y - uk,) 2 0. 

Since E > 0, y is arbitrarely chosen in X and ukt E C, we may conclude as in the 
proof of Theorem 2.1. n 

COROLLARY 4.1. Suppose that assumptions (HI)-(H3) are satisJied. If 
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(i) R(A, f, C, u,) is a-compact 

(ii) there exists a nonempty subset W of X\(O) such that 
WA, f, C, 4 c W 
and 

cc> %m,A(w> > (f,W), v’w E w, 

then problem P has at least one solution. 

REMARK 4.1. (i) R(A, f, C, u,) c R(A, f, u,). (ii) If R(A, f, u,) is a-compact 
then R(A, f, C, u,) is a-compact. (iii) If R(A, f, C,U,) is a-compact, 
then R(A, f, C,uO) c C, fl R(A, f, u,). (iv) Theorem 4.1 is a more general 
existence theorem than Theorem 3.1. However, Theorem 3.1 gives us a direct 
relation between Problem P and its penalization. For instance, if A is a potential 
operator, i.e. A = Cp’ with @ E C’(X, W), then a way to solve Problem P is to 
compute a solution of the optimal program 

mm{@(z) + n&(u) : z E X} 

for n E N great enough. 

We are now able to establish two basic results which will be refered to in Section 
6. Their corresponding versions in the framework of variational inequalities have 
been often used in order to study various convex unilateral problems in elasticity 
(see Fichera [l 1 J, Goeleven [12], Kikuchi and Oden [14] and Panagiotopoulos 
WI)- 

THEOREM 4.2. Let X be a real reflexive Banach space and let A : X -+ X* be a 
bounded linear operator We suppose that assumptions (HI) and (Hz) are satis$ed. 
If A is coercive, i.e. there exists (Y > 0 such that 

Then for each f E X*, problem P has at least one solution. 
ProoJ It is clear that 

(Au+ - u,>/ II u II+ +m as II u II+ +m, 

so that R(A, f, u,) is empty (Remark 3.1) and thus R(A, f, C, ti,) is empty too. 
We conclude by application of Theorem 4.1. n 

THEOREM 4.3. Let X be a real Hilbert space and let A : X + X* be a bounded 
linear operator We suppose that assumptions (HI) and (Hz) are satisfied. If 
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(i) A is semicoercive, i.e. there exists a > 0 such that 

(Au,u) 1 Q 11 Pu 112, vu E x, 

with P = I - Q, where I denotes the identity mapping and Q denotes the 
orthogonal projection of X onto Ker(A + A*)(A* is the adjoint operator of 
4; 

(ii) dim{Ker(A + A*)} < +oo; 

(iii) u, E KerA; 

(iv) (f, w) < 0, VW E Cm n (KerA + A*)\(O). 

Then problem P has at least one solution. 

Proo$ We will prove that all assumptions of Corollary 4.1 are satisfied. We 
claim that A satisfies the S+property. Indeed, let {un 1 n E N} be a sequence such 
that 

u, -uinX, 

and 

limsup(Au,,u, - u) 5 0. 

We have 

CL. limsup 1) Pu, - Pu II* 5 lim sup(Au, - Au, u, - u) 
5 lim sup(Au,, u, - u) 

+ lim sup(Au, u - u,) 
I 0, 

and thus Pu, + Pu. Moreover, Q is bounded linear and thus weakly continuous. 
Therefore Qu, + Qu since dim {Ker(A + A*)} < +co. Thus 

U -Pu,+Qu,+Pu+Qu=u. n- 

It is also clear that all other assumptions required by Proposition 3.1 are also 
satisfied. Thus (Remarks 4.1) R(A, f, C, uO) is u-compact and R(A, f, C, u,) c 
W, where 

W = C, II {x E X : (Ax, cc) = O}\(O) = C, fI (Ker(A + A*))\(O). 

We have 

(A(tz), tz - uo)/t > -(Ax,q,), Vx E X. 



136 D. GOELEVEN 

Thus 

&J,/&) 2 -(Aw, %) = 0, VW E w, (9) 

so that assumption (iv) together with (9) imply condition (C) of Corollary 4.1. n 

REMARK 4.2. (i) If A is semicoercive, C is a subset of X which can be represented 
as the union of a finite collection of nonempty closed convex subsets Cj(j = 
1, . . . . N) of X, i.e. C = LJ$f=*Cj and if uLt, E int(f&Cj}, then assumptions (HI) 
and (Hz) are satisfied. Indeed, we known that A is maximal monotone and satisfies 
the SS-property so that we may conclude by using Proposition 2.1. (ii) If A is 
symmetric, then W = C, II (KerA)\{O} and ~~~,~(w) > 0,Vw E W, so that 
assumption (iii) on u, is not necessary. 

5. A Nonlinear Perturbation of Elliptic Linear Hemivariational Inequalities 
Where the Constraints Are Defined by the Finite Union of Closed Convex 
Sets 

Let us consider the problem: Find u E C such that 

s 
Vu.Vvdx + s, f(x,u).vdx - hg(x).lidx > 0, Wu E T&J), (10) 

R 
where C can be represented as the union of a finite collection of closed convex 
subsets Cj(j = l,...,N) of H’(R) h w ere R is an open bounded of class C’ 
subset of Rp(p E Hv, p 2 1). Let g be a fixed element of L*(R) and let f be a 
caratheodory function satisfying conditions (fi) - (fz) of Proposition 3.3. In this 
case, the functions 

fW(x) := liminf{f(x, u) : u 3 +oo} 
fW(x) := limsup{f(x,u) : u -+ --co} 

are well defined (see Brezis and Nirenberg 151). 

THEOREM 5.1. If 

(i) 0 E fl~lint{Ci} 

(ii) Jo f”(x)dx < &g(x:)dx < Sst f=dx)W 

then problem (10) has at least one solution 
Pro05 Set 

(Au, v) := Jo Vu.Vvdx, 
(Bu, v) := Js2 f (x, u).dx, 

and 

(f, v) := Jn g.vdx. 
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We know that A is a bounded maximal monotone operator satisfying the S+- 
property. The distance function of C is expressed as the pointwise minimum of 
convex functions d, where d, : H’(a) -+ R denotes the distance function of 
C,, i.e. dc = min{dt, . . . . dN}. Thus, by Lemma 2.1, A + Xddc(X 2 0) 
is pseudomonotone. With condition (fi) on f, the corresponding operator B is 
strongly continuous (i.e. 21, 1 u + Bu, -+ Bu) and thus A + B + X6’dc is 
pseudomonotone too. Moreover, it is clear that A + B is bounded. Assumption (i) 
implies that C is star-shaped with respect to a certain ball with the origin in 0. By 
Proposition 3.3, R(A+ B, f, 0) is u-compact and R(A + B, f, 0) C KerA\{O} = 

R\-Pb 
It remains to prove that 

~A+B,&) > (fd, vc E R\{oh 

By ([5]; Proposition ii.4), 

I~B,O(W) 2 Jn+cwj fd+w dx + J&w) f=‘Ww dx 

(11) 

with 

R+(w) := {x E R 1 w(x) > O}, 
and 

n-(w) := {x E 52 1 w(x) < O}. 
Moreover 

TA+B,O(w) 2 TA,OW + TB,OW 2 D3,0(47 
and condition (4.2) will be satisfied if 

Jo+cc. foo(x).c dx + J&, fY4.c dx > fa g6-d.c dx, vc E a\@>, 

which is equivalent to 

Jo Y(x) dx < Jo g(x) dx < & fc&) dx. 

6. A Nonconvex Unilateral Contact Problem in Elasticity 

Let 0 be a body identified as a bounded open connected subset of R3 referred to 
a coordinate system (0, x1,22, x3) and l? be the body’s surface supposed to be 
regular (i.e. l? is an hypersurface of class Cm(m 2 1) and 0 is located on 
one side of I’). It is assumed that R is subjected to a body force density F. Surface 
tractions t are applied to a portion C of P. The body R is assumed to be fixed along 
an open subset Iv of l? (possibly empty). We suppose that I’u n C = 0. 

Let D = {aij} be the stress tensor and let n = {ni} be the outward unit normal 
vector on I?. We denote by S = {Si} the stress vector on I, i.e. Si = aij.nj. 
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Let u denotes the displacement field of the body. We consider the case of 
infinitesimal deformations of the body and we supppose that the body’s material is 
characterized by a Cauchy elastic law, i.e. aij = C+l.eij where E = {Ebb} is 
the strain tensor and C = {C,,,(z)} is the linear-elasticity tensor. The elasticity 
tensor C E [LCO(R)] 81 is supposed to satisfy the classical symmetry properties: 

Gjd4 = GjkdX) = Gj&), 

and the ellipticity property 

Cij&)CijC~a 2 M&z (m > Oh Q's E fi2, 

and for all 3 x 3 symmetric matrices <. The displacement field u satisfies the 
following system of equations: 

(1) * = Fi in 0, 
(2) Si = ti on C, 
(3) u = 0 on I?u. 

Let X be the Hilbert space defined by 

X := {II E [H1(fi)]3 : v = 0 a.e. on I?u}. 

Then, as a weak formulation of system (l)-(3) we consider the variational 
equality 

u E X : a(u, v) = (f, v) for all v E X, 

where a(u, v) is the bilinear continuous symmetric form 

a(~, 4 = Jo Gj~~~ij(4w&U)df& 

(12) 

and (v, f) is the linear continuous form 

(v, f) = Jn FividO + Jc tivids 

with F E [L2(fl)13 and t E [L2(C)]3. 
Let us now assume that constraints on the displacement can be represented by 

a closed subset C of X. We introduce a reaction force R E X* in order to describe 
the action of the constraints on the body and we assume a normal contact law: 
u E C, -R E NC(U). In this case the system is described by 

u(u, TI) = (f + R, v), Q’v E X, (13) 

-R E NC(u), u E C. (14) 

Combining (13) and (14) we obtain the hemivariational inequality 

u E C : u(u,w) > (f,w), VW E Q(u). (15) 
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We refer to ([17], section 7.16) for similar considerations and other problems 
in elasticity which lead to a model like (15). 

Let A : X -+ X* be the bounded linear and symmetric operator defined by 

(Au, U) = a(u, w), Vu, ZI E X. 

It is known that if p(I’,) > 0 then A is coercive. However, if I?,~J = 0 then A 
is semicoercive and KerA = {V E X : V(Z) = a A z + b, a, b E R3}, where A 
denotes the vector product in R3. 

THEOREM 6.1. Suppose that the set C is dejined as the union of ajnite collection 
of closed convex subsets Cj (j = 1, . . . , N) of X. We assume thatint{f$!=IQj} # 
0. Then (i) if p(l?~) > 0 then problem (15) has at least one solution for each 
f E X*, and (ii) if ~,JJ = 0 then problem (15) has at least one solution for each 
f E X* satisfying the inequality 

(f,w) -=c 0,Vw E C, n Ker(A)\{O}. 

ProoJ: (i) By Theorem 4.2 and Remark 4.2 (i). (ii) By Theorem 4.3 and Remark 
4.2. n 
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